
 

  
Abstract — The linear failure rate (hazard) and generalized 

linear failure rate (hazard) distributions are uniquely identified by 
their linear hazard functions. In this paper, homogenous ordinary 
differential equations (ODES) of different orders were obtained for 
the probability functions of linear failure rate and generalized 
linear failure rate distributions. This is possible since the 
aforementioned probability functions of the distributions are 
differentiable and the former distribution is a particular case of the 
later. Differentiation and modified product rule were used to derive 
the required ODEs, whose solutions are the respective probability 
functions. The different conditions necessary for the existence of 
the ODEs were obtained and it is in consistent with the support 
that defined the various probability functions considered. The 
parameters that defined each distribution greatly affect the nature 
of the ODEs obtained. This method provides new ways of 
classifying and approximating other probability distributions apart 
from one considered in this research. Algorithms for 
implementation can be helpful in improving the results.  

 
Keywords — Differentiation, product rule, quantile function, 

failure rate, approximation, hazard function, inverse survival 
function.   

 

I. INTRODUCTION 
IFFERENT mathematical techniques are viable tools in 
statistics. In mathematical statistics, different 

mathematical areas are used heavily in better understanding 
of probability distributions. Some of these are calculus, 
differential equations, algebra, measure theory, fixed point 
and topology and so on. Hitherto most of the use of ordinary 
differential equation (ODE) is often in mode and parameter 
estimation and approximation. Approximation of quantile 
function features prominently in the use of ODE in 
approximation [1-6].                                                                                           
Few available literatures have considered the study of the 
ODE of different probability functions of the studied 
distribution in particular and probability distributions in 
general. The available ones contain previous works done on 
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the ODE of the following distributions:  beta distribution [7], 
Lomax distribution [8], beta prime distribution [9], Laplace 
distribution [10] and raised cosine distribution [11]. 

  Derivation of homogenous ordinary differential 
equations for the probability density function (PDF), 
survival function (SF), inverse survival function (ISF), 
hazard function (HF) and reversed hazard function (RHF) of 
linear failure rate and generalized linear failure rate 
distributions was considered in this paper. This will also 
help to provide the answers as to whether there are 
discrepancies between the support of the distribution and the 
conditions necessary for the nature and existence of the 
ODEs. Similar results for other distributions have been 
proposed and can be seen in [12-24]                                                                     

The linear failure rate (hazard) and generalized linear 
failure rate (hazard) distributions are uniquely identified by 
their linear hazard function and the former is generalized to 
obtain the later distribution.   

The details of the linear failure distribution can be found 
in [25]. Kantam et al. [26] gave the detailed comparison 
between the distribution and the Rayleigh distribution while 
Block et al. [27] reviewed some mixture of distributions 
with linear failure rates. Estimation of parameters of the 
distribution has been explored intensively such as: Bayes 
estimate [28], detailed inference procedures [29], Bayesian 
estimation based on records [30], use of simulation in the 
Bayesian estimates of the parameters [31], parameter 
estimation by the use of masked data [32], Bayesian 
inference for randomly progressive random censored 
samples [33].                                                                            
The variants or generalizations and modifications of the 
distribution include: Generalized Linear Failure rate 
distribution was proposed by Sarhan and Kundu [34].                                                                                                    

Others are: bivariate linear failure rate distribution [35-
36], bivariate and multivariate generalized linear failure rate 
distribution [37], McDonald generalized linear failure rate 
distribution [38], modified generalized linear failure rate 
distribution [39], new five parameter modified generalized 
linear failure rate distribution [40], beta-linear failure rate 
distribution [41] and extended linear failure rate distribution 
[42].                                                                           
Others are: bivariate generalized linear failure rate-power 
series class of distributions [43], Kumaraswamy generalized 
linear failure rate distribution [44], extension of the 
generalized linear failure rate distribution [45], generalized 
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linear failure rate power series distribution [46], Poisson 
generalized linear failure rate distribution [47] and beta 
linear failure rate geometric distribution [48]. The 
distribution was applied by Bain [49] in the analysis of 
lifetime data.           

The ordinary differential calculus was used to obtain the 
results presented in different sections.    
                                   

II. LINEAR FAILURE RATE DISTRIBUTION 
A Probability Density Function 
The PDF of the Linear failure rate distribution is given as; 

 

2
( )

2( ) ( )e
bxax

f x a bx
− +

= +                         (1) 
When 0 & 0b a= ≠  , the distribution reduces to the 
exponential distribution.                                                             
When 0 & b 0a = ≠  , the distribution reduces to the 
Rayleigh distribution.                                                                                                                                                      
Differentiate equation (1), to obtain;     
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b a bxf x f x
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+ ′ = − + 

 

    (2)

 ( ) ( ) ( )bf x a bx f x
a bx

 ′ = − + + 
           (3) 

The equation can only exists for  0, 0.a b x− ≠ >                                                              
The first order ODE for the PDF of the Linear failure rate 
distribution is given by;         
 2( ) ( ) ( ( ) ) ( ) 0a bx f x b a bx f x′+ − − + =         (4)

  
( )

2(1) ( )e
ba

f a b
− +

= +                             (5) 
Special cases are considered;                         
When 0 & 0b a= ≠ , equation (4) becomes;      
 ( ) ( ) 0f x af x′ + =                                        (6) 
When 0 & b 0a = ≠ , equation (4) becomes;      
 2( ) (1 ) ( ) 0xf x bx f x′ − − =                        (7) 
 
B Quantile Function                           
The QF of the Linear failure rate distribution is given as;  

 2( ) ( ) ln(1 )
2
baQ p Q p p+ = − −             (8) 

Differentiate equation (8) to obtain;                                            

 
1( ) ( ) ( )

1
aQ p bQ p Q p

p
′ ′+ =

−
            (9) 

The equation can only exists for 0,0 1.a b p− ≠ < <                                                                 
The first order ODE for the QF of the Linear failure rate 
distribution is given by;  
 (1 )( ( )) ( ) 1 0p a bQ p Q p′− + − =                (10)

 2(0.1) (0.1) 0.1054
2
baQ Q+ =              (11)

 
22 2 0.21(0.1)

2
a a bQ

b
− ± +

=           (12) 

Special cases are considered;                         

When 0 & 0b a= ≠ , equation (10) becomes;     
 (1 ) ( ) 1 0a p Q p′− − =                           (13) 
When 0 & b 0a = ≠ , equation (10) becomes;     
 (1 ) ( ) ( ) 1 0b p Q p Q p′− − =                   (14)
                                  
C Survival Function 
 
The SF of the Linear failure rate distribution is given as;  

 
2( )

2( ) e
bat t

S t
− +

=                                       (15) 
Differentiate equation (15) to obtain;                                            

 
2( )

2( ) ( )e
bat t

S t a bt
− +

′ = − +                       (16) 
The equation can only exists for 0, 0a b t− ≠ > .                                                                               
The first order ODE for the SF of the Linear failure rate 
distribution is given by;    
 ( ) ( ) ( ) 0S t a bt S t′ + + =                       (17)

 
( )

2(1) e
ba

S
− +

=                                           (18) 
Special cases are considered;                         
When 0 & 0b a= ≠ , equation (17) becomes;     
 ( ) ( ) 0S t aS t′ + =                                   (19) 
When 0 & b 0a = ≠ , equation (17) becomes;     
 ( ) ( ) 0S t btS t′ + =                                   (20)
                                    
D Inverse Survival Function 
The ISF of the Linear failure rate distribution is given as;  

 2( ) ( ) ln
2
baQ p Q p p+ = −                   (21) 

Differentiate equation (21) to obtain;                                            

 
1( ) ( ) ( )aQ p bQ p Q p
p

′ ′+ = −               (22) 

The equation can only exists for 0,0 1.a b p− ≠ < <                                                         
The first order ODE for the ISF of the Linear failure rate 
distribution is given by;         
 ( ( )) ( ) 1 0p a bQ p Q p′+ + =                   (23)

  2(0.1) (0.1) 2.3025
2
baQ Q+ =           (24)

  2(0.1) 2 2 4.605aQ a b
b

= − ± −             (25)

                                  
E Hazard Function 
                                                                                                                     
The HF of the Linear failure rate distribution is given as;  
 ( )h t a bt= +                                           (26) 
Differentiate equation (26) to obtain;                                            
 ( )h t b′ =                                                   (27) 
From equation (26), it can be obtained that;       

 
( )h t ab

t
−

=                                           (28) 

Substitute equation (28) into equation (27);       
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( )( ) h t ah t

t
−′ =                                       (29) 

The first order ODE for the HF of the Linear failure rate 
distribution is given by;      
 ( ) ( ) 0th t h t a′ − + =                               (30)

 (1)h a b= +                                               (31) 

When 0 & 0b a= ≠ , equation (27) becomes;     
 ( ) 0h t′ =                                                   (32) 

When 0 & b 0a = ≠ , equation (30) becomes;     
 ( ) ( ) 0th t h t′ − =                                       (33) 
The nature of the ODEs point to the linearity of the hazard 
function. 

F Reversed Hazard Function 
The RHF of the Linear failure rate distribution is given as; 
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Differentiate equation (34) to obtain;                      
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                                                                                       (35)
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                                                                                       (36) 
The equation can only exists for 0, 0a b t− ≠ > .                                           

 ( )( ) ( ) ( ) ( ) ( )bj t a bt b a bt bj t j t′ = + − + −          (37) 
The first order ODE for the RHF of the Linear failure rate 
distribution is given by;           

2( ) ( ) ( 1)( ) ( ) 0bj t bj t b a bt j t′ + + − + =                  (38)       

( )
2

( ) ( )
2 2

( )e(1)
1 e e 1

ba

b ba a

a b a bj
− +

− + +

+ +
= =

− −
              (39)

                     

III. GENERALIZED LINEAR FAILURE RATE DISTRIBUTION  
     

A Probability Density Function 
The PDF of the Generalized Linear failure rate distribution 
is given as;         

 

2 21
( ) ( )

2 2( ) ( ) 1 e e
bx bxax ax

f x a bx
θ

θ
−

− + − + 
= + − 

  
        (40) 

When 1θ = , equation (40) reduces to the Linear failure rate 
distribution.                                                                When 

0 & 0,b a= >  equation (40) reduces to the Generalized 
exponential distribution.                                                             
When 0 & b 0a = > , equation (40) reduces to the 
Generalized Rayleigh distribution.                                                                                                                                                       
 
Differentiate equation (40), to obtain;    
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 −
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                                                                                    (41) 
The equation can only exists for 0, , 0a b x θ− ≠ > .                                                          
The ODEs can only be derived for any given values of 

,  and .a b θ                                                                                
When 1θ = , equation (41) becomes;         

 ( ) ( ) ( )bf x a bx f x
a bx

 ′ = − + + 
                  (42)

  2( ) ( ) ( ( ) ) ( ) 0a bx f x b a bx f x′+ − − + =       (43) 
To obtain a simpler ODE, differentiate equation (41);   
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                                                                                          (44) 
The equation can only exists for 0, , 0a b x θ− ≠ > .                                                           
These presented equations derived from equation (41) are 
required in the evaluation of equation (44);        
 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 12, 2018 

ISSN: 1998-4464 598



 

2

2

( )
2

( )
2

( ) ( 1)( )e ( )
( )

1 e

bxax

bxax

f x b a bx a bx
f x a bx

θ
− +

− +

′ − +
= + − +

+  
−  

 

  

                                                                                    (45)        
2

2

( )
2

( )
2

( 1)( )e ( ) ( )
( )

1 e

bxax

bxax

a bx f x ba bx
f x a bx

θ
− +

− +

′− +
= + + −

  +
−  

 

  

                                                                                   (46)      
2

2

( )
2

( )
2

( 1) e ( ) ( )
( )

1 e

bxax

bxax

b b f x ba bx
a bx f x a bx

θ
− +

− +

′ −
= + + −   + + 

−  
 

                                                                                 (47)         
2

2

( )2 2

( )
2

( 1)( ) e

1 e

( )( ) ( )
( )

bxax

bxax

a bx

f x ba bx a bx
f x a bx

θ
− +

− +

− +
 

−  
 

′ 
= + + + − + 

             (48)         

 
2

2

( ) 222

2
( )

2

(( 1)( )e ) ( ) ( )
( )

1 e

bxax

bxax

a bx f x ba bx
f x a bx

θ
− +

− +

′ − +
= + + − +   

−  
 

                                                                                 (49)         
2

2

( ) 22

2
( )

2

2

( 1)(( ) e )

1 e

1 ( ) ( )
1 ( )

bxax

bxax

a bx

f x ba bx
f x a bx

θ

θ

− +

− +

− +

 
−  

 

′ 
= + + − − + 

                 (50)             

Substitute equations (45), (47), (48) and (50) into equation 
(44) to obtain;   
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        (53)                                

Special cases of the second order differential equation for 
the PDF of the generalized linear failure rate distribution are 
considered;                                                                              
When 0 & 0b a= > , equation (51) becomes;    
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When 0 & b 0a = > , equation (51) becomes;     
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                                                                                         (55)  
 
B Quantile Function 
The QF of the generalized Linear failure rate distribution is 
given as;        

 
1

2( ) ( ) ln(1 )
2
baQ p Q p pθ+ = − −        (56)                                      

Differentiate equation (56) to obtain;                                            
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p
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−
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          (57)                     

The equation can only exists for  
 0, 0,0 1a b pθ− ≠ > < <  .                                         

 

1

1( ( )) ( )
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pa bQ p Q p
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θ

θθ
′+ =

−
           (58)       

 
1 1

(1 )( ( )) ( ) 0p p a bQ p Q p pθ θθ ′− + − =            (59)                      
The ODE can be derived for any given values of a, p and θ.    
When 1,θ =  equation (58) becomes;        
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 ( ( )) ( )
(1 )
pa bQ p Q p

p pθ
′+ =

−
         (60)       

 (1 )( ( )) ( ) 0p p a bQ p Q p pθ ′− + − =           (61)       
To obtain a much simpler ODE, differentiate equation (57); 
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                      (62)        

The equation can only exists for  
0, 0,0 1a b pθ− ≠ > < < .                                           

Substitute equation (57) into equation (62);      
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1( ( )) ( ) ( ( )) ( )

a bQ p Q p bQ p

a bQ p Q p a bQ p Q p
p
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                                                  (63) 
 ( (0)) (0) 0 (0)a bQ Q Q′ ′+ = ⇒             (64)              
Different cases are considered;                        
When 1,θ =  equation (63) becomes;        

 2 2( ( )) ( ) ( ( )) ( ) 0a bQ p Q p a b bQ p Q p′′ ′+ − − + =    
                                                                    (65) 
When 0 & 0b a= > , equation (60) becomes;     

 2 2 1( ) ( ) ( )aQ p a Q p aQ p
p
θ

θ
−′′ ′ ′= +                      (66) 

 2( ) ( ) ( 1) ( ) 0pQ p a pQ p Q pθ θ θ′′ ′ ′− + − =  (67) 
When 0 & b 0a = > , equation (63) becomes;     
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C Survival Function 
The SF of the generalized Linear failure rate distribution is 
given as;          
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2( ) 1 (1 e )
bat t

S t θ− +
= − −                      (70)                                      

Differentiate equation (70) to obtain;                                         
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S t a bt θθ

− + − +−′ = − + −        (71)                 
The equation can only exists for 0, , 0a b t θ− ≠ > .                                                                  
These equations derived from equation (70) are required in 
further simplification of equation (71);        
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However, equation (71) can be written as;            
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Substitute equations (72)-(74) into equation (75);     
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2(1) 1 (1 e )
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S θ− +
= − −                          (77)               

The ODEs can be derived for any given values of a, p and θ. 
When 1,θ =  equation (73) becomes;        
 ( ) ( ) ( ) 0S t a bt S t′ + + =                         (78) 
 
D Inverse Survival Function                         
The ISF of the generalized Linear failure rate distribution is 
given as;        

 
1

2( ) ( ) ln(1 (1 ) )
2
baQ p Q p p θ+ = − − −          (79)                                      

Differentiate equation (79) to obtain;                                            
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p

θ

θ
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The equation can only exists for  
0, 0,0 1a b pθ− ≠ > < < .                                                     

The ODEs can be derived for any given values of a, p and θ.    
When 1,θ =  equation (81) becomes;       
 ( ( )) ( ) 1 0p a bQ p Q p′+ + =                  (82)       
When 2,θ =  equation (81) becomes; 
 

2(1 1 )(1 )( ( )) ( ) 1 0p p a bQ p Q p p′− − − + + − =  
                                                                                (83)        
 
E Hazard Function 
The HF of the generalized Linear failure rate distribution is 
given as;          
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Differentiate equation (84) to obtain;                                     
2
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The equation can only exists for 0, , 0a b t θ− ≠ > .                                                        
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Differentiate equation (85) and using the results obtained 
from the PDF. This is easily done by the modification of 
equation (51);   
 

2

2

2

2

( ) ( )
( )( )( )

( ) 1 ( ) ( )
1 ( )

( ) ( )
( )

            ( )
( )

( )

b h t ba bt h t
a bt h t a bth th t

h t h t ba bt h t
h t a bt

h t ba bt a bt h t
h t a bt

h t
b b h t

a bt

θ

 ′ 
+ + − −  + +′  ′′ = +  ′ − + + − −  − + 

′ 
+ + + − −  + −


′− − + 

+ 
                                                     (86)                         
The equation can only exists for 0, , 0a b t θ− ≠ > .                                
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Different cases are considered;                        
When 0 & 0b a= > , equation (86) becomes;    
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When 0 & b 0a = > , equation (86) becomes;    

 

2

2

2

1 ( ) 1 ( )
( )( )( )

( ) 1 ( ) 1 ( )
1 ( )

( ) 1 1( ) ( ) ( )
( )

h t bt h t
t h t th th t

h t h t bt h t
h t t

h tbt bt h t b h t h t
h t t t

θ

 ′ 
+ − −  

′  ′′ = +  ′ − + − −  −  
′  ′− + − − − − +  

  

        

                                                                             (90)  

F Reversed Hazard Function 
The RHF of the generalized Linear failure rate distribution is 
given as;          
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Differentiate equation (91) to obtain;                                        
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The equation can only exists for 0, , 0a b t θ− ≠ > .                                      
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The first order ODE for the RHF of the generalized Linear 
failure rate distribution is given by;      
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IV. CONCLUDING REMARKS 
    Differentiation and modified product rule were used to 
obtain the ordinary differential equations (ODES) of 
different orders for the probability functions  of linear failure 
rate and generalized linear failure rate distributions. This 
was largely due to differentiability of the probability 
functions. Every changes in the parameters result to a unique 
ODE. Overall, the ODEs are in consistent with the support 
and parameter domains that characterize the distributions. In 
addition, several research methods can be used to derive the 
solutions of the ODEs [50-67]. This method of 
characterizing distributions cannot be applied to 
distributions whose PDF or CDF are either not differentiable 
or the domain of the support of the distribution contains 
singular points.  
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